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Summary 

We present an analysis of air quality trends in Europe aiming to identify the relative contribution of 
the main factors influencing ambient air quality. The main pollutants under focus are ozone, nitrogen 
dioxide and particulate matter for which a dense enough network of observation is available to derive 
robust conclusion on the overall air quality in Europe. Air pollutant concentrations are primarily driven 
by the European emission of anthropogenic precursors, meteorological variability driving the 
accumulation and transformation of pollutants, and long-range transport at hemispheric scale.  

Substantial improvements are observed in ambient air over the period 2000-2017 according to AQ e-
reporting monitoring stations. PM10 particulate matter decreases by 25 to 45%. For ozone peaks (as 
the fourth highest daily maximum of 8-hr mean: 4MDA8) the decrease is only about 10%, whereas the 
improvement in one of the main precursors, the ambient NO2, is 30%. The reported anthropogenic 
emissions of NOx reduction in Europe reach 53% over the same period (Colette and Rouïl, 2020). 

The mismatch between those estimates raise legitimate question on a possible discrepancy between 
reported emission trends and actual efficiency of mitigation measures (in particular for NOx), but also 
on the possible role of external factors such as meteorological variability, natural emissions, or 
hemispheric transport for ozone and particulate matter. 

To address this question, we rely on two complementary modelling approaches, (i) chemistry-
transport modelling (CTM) and (ii) machine learning statistical models. The CTM employed here is the 
EMEP MSC-W model used in policy support activities in the framework of the United Nations 
Convention on Long-range transboundary air pollution (CLRTAP). The machine learning model is a 
Generalized Additive Model (GAM) developed by ETC/ATNI to reproduce the meteorological sensitivity 
of European air pollution.  

Both models are confronted against in-situ monitoring stations from the Airbase and AQ e-reporting 
databases (therefore also including most EMEP sites). Only stations with data coverage at least 75% of 
the years over the 2000-2017 period were included. This drastically reduces the number of monitoring 
sites and the spatial representativity of the assessment, and is biased towards countries benefiting 
from a long-term monitoring network. 

For ozone, the GAM and CTM model display similar performances in capturing the interannual 
variability of high ozone peaks, but the GAM is notably better for the intra-annual variability of daily 
maxima. Both perform better over Western, Central and Northern Europe than over Mediterranean 
areas. For NO2, the GAM model captures much better the interannual variability throughout Europe. 
For PM10, the performances of the GAM and CTM are closer, with yet a slight advantage to the GAM 
compared to the CTM.  

The two models can be used to assess the relative importance of driving factors on ambient air. In the 
sensitivity simulations investigated here, the GAM model isolates the contribution of (i) meteorological 
variability and (ii) emissions and background. The CTM scenarios investigated here isolate the 
contributions of (i) meteorological variability and background and (ii) emissions. This difference in 
design unfortunately precludes a clear comparison between both approaches. There are however 
some clear conclusions that can be drawn from this comparison: 

ǒ Emission changes are the main driver to all air pollutant trends. For NO2 and PM10, it is clear from 
both GAM and CTM results that this driver dominates and contributes to at least 90% of the 2000-
2017 trend. 

ǒ For ozone peaks (as 4MDA8), the meteorological factor can be important for the 2000-2017 trend. 
The GAM model estimates that it contributes to an increase counteracting mitigation effort up to 
a magnitude of 20 to 80% (compared to the effect of emission and background changes) in Austria, 
Belgium, Czech Republic, France and Italy. Given the good skill of the GAM model to capture 
meteorological effect, this estimate can be considered quite robust.  
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The CTM sensitivity simulations investigated here include both meteorology and background changes. 
They confirm that such factors can be important for the trends, also reaching 20-150% (compared to 
the effect of emission changes) depending on the countries, but generally contributing to decreasing 
trends (therefore acting in the same direction as European mitigation strategies). This decrease is 
largely influenced by ozone boundary conditions that follow a decreasing trend in the model 
simulations. From the simulations analysed here it is not possible to conclude whether the CTM would 
have indicated a similar meteorological penalty as the GAM that would have been compensated by 
hemispheric contribution. 

These results demonstrate the substantial impact of factors such as meteorological variability or 
background changes for ozone peaks, whereas European emission changes dominate for PM10 and 
NO2 trends.  

We then extend the analysis to natural factors and individual activity sectors. Such an analysis can only 
be performed for PM and precursors, and on the basis of the EMEP monitoring sites or CTM results as 
the GAM model is only designed to capture meteorological factors.  

The joint analysis of EMEP model and measurements results show a significant reduction in both PM10 
and PM2.5 (0.28 µg mg-3 y-1 and -1.7-2.0 % y-1). The decrease in sulphate explains 22-29% of the 
reductions in PM10 while nitrate and ammonium explain each around 10% of the PM10 trend in the 
observations. The model estimates a higher role of nitrate and ammonium to the PM10 trend (25% and 
14% respectively). Observed trends in organic aerosols indicate that this may be important, but too 
few data and large uncertainties in the trend precludes validation against the model estimates. 

The EMEP CTM can be used to infer how the contribution from different sectors have changed over 
time. 

The relative contribution of agriculture and industry to the total PM10 mass has been reduced by 
around 30% for both sectors. This similar evolution is not directly linked to the emission trends in the 
respective sectors, it is a nonlinear relationship depending on availability of precursor gases to form 
ammonium sulphate and ammonium nitrate. The relative contribution of traffic sources to PM10 has 
been reduced with around 20%, while the trend attributed to residential heating is marginal. The 
model also indicates that the natural contributions (such as sea salt and dust) has had little impact on 
the long-term changes in PM10. 

These results demonstrate that measures to reduce emissions of precursor gases from several sectors 
explain the PM reductions in Europe. The heating sector has become a relatively more important 
contributor to the aerosol pollution and needs more attention. In addition, further methods 
development to reduce the uncertainties in both modelling and observations of organic aerosols from 
the residential heating sector is needed. 
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1 Introduction 

Context: 

ǒ The present report aims to strengthen our understanding of air quality trends in Europe on the 
basis of the analysis of in-situ observation available in the AQ e-reporting database, supplemented 
by additional information from air quality models. We take stock of past assessment performed 
by ETC/ACM and ETC/ATNI and focus essentially on providing more insight on how meteorological 
variability, natural factors, and emission from the main activity sectors might have influence the 
trend in PM10, NO2 and Ozone between 2000 and 2017. 

Motivation: 

ǒ Documenting the long term evolution of air quality trends in Europe is an important topic, in 
particular to understand to what extent an improvement is found in terms of detrimental impacts 
on human health (Colette et al., 2017a) or ecosystems (Colette et al., 2018). 

Availability of air quality observations:  

ǒ A few years ago, such long term trend analyses could only be performed on the basis of a limited 
set of reference sites such as the EMEP network (Colette et al., 2016).  

ǒ The first studies including a wider range of regulatory air quality monitoring stations (including 
urban sites) were limited in terms of spatial coverage with long terms records available only for a 
few countries in Western Europe (Colette et al., 2015). 

ǒ Long term air quality observations are now available over a much larger dataset of sites, the most 
recent assessment (Colette et al., 2019) relied on about 3,500 stations passing the requirement in 
terms of completeness of observations over the 2000-2017 period.  

Such assessment on how air quality trends evolve also raise legitimate questions on the main drivers 
influencing the trend:  

ǒ Atmospheric composition is notoriously complex because of the non-linear chemical reaction 
involved, which are also influenced by (i) the local emission of anthropogenic of air pollutants, (ii) 
long range transport, (iii) biogenic and natural sources, (iv) meteorological variability. Quantifying 
the respective importance of each of these factors is then crucial to conclude on the efficiency of 
mitigation measures.  

ǒ Chemistry-Transport models can be used for such a quantitative decomposition of each of those 
factors as documented in the ETC/ACM Technical Report 2016/7 building upon the Eurodelta-
Trends experiment coordinated under EMEP (Colette et al., 2017b). 

ǒ Statistical models can also be developed to isolate the impact of the meteorological factor.  The 
first development in that direction were explored for ozone (Solberg. et al., 2015;Solberg et al., 
2018b). It was extended to NO2 and PM (Solberg et al., 2018a), and a synthesis was presented in 
(Solberg et al., 2020a). 

In the present report: 

ǒ We put in perspective statistical versus chemistry-transport models to quantify the impact of 
meteorology on air quality trends  

ǒ We also discuss the impact of activity sectors and natural factors, which can only be done on the 
basis of chemistry transport models. 

For this work we rely on:  

ǒ Statistical models developed internally by ETC/ATNI  

ǒ Chemistry-Transport model results made available to ETC/ATNI by EMEP/MSC-W. 



 

Eionet Report - ETC/ATNI 2020/8 8 

 

2 Methods 

2.1 GAM model 

A Generalized Additive Model (GAM) is a non-linear regression model linking expected values of a 
given response variable to several explanatory variables. A GAM could be considered an extension of 
a standard MLR (multiple regression model) in which the coefficients are replaced by smooth 
functions. The GAM used in this study has been developed for several years for the assessment of air 
pollutant trends in Europe based on long-term monitoring data of O3, NO2, and PM. The aim has been 
to apply and adapt for European conditions a statistical method that has been used by the US-EPA on 
a routine basis for surface ozone trend assessments, adjusting for the inter-annual impact of changing 
meteorology.  

The response variable in the GAM is a measured air pollutant (O3, NO2, PM10) while the explanatory 
variables are represented by local, gridded meteorological data (temperature, relative humidity etc) 
as well as temporal variables (day of week, season and time since the start of the data series). The 
GAM is applied to time series of daily data for air pollutant concentrations and meteorology, and in 
the present study, we used data for the period 2000-2017.  

The GAM was based on monitoring data from EEA (AirBase and e-reporting) available by download 
ŦǊƻƳ 99!Ωǎ ǿŜō ǇŀƎŜ ŀǎ ǿŜƭƭ ŀǎ ƻn meteorological data extracted from ECMWF (ERA-Interim as 
described by Dee et al., 2011).  

All available EEA monitoring sites fulfilling a data capture criterion that 75 % of the data should exist 
in at least 75 % of the years in this period were used. The GAM was then applied to each monitoring 
station and parameter (NO2, O3, PM) individually. The main outcome of the GAM is that it optimises 
the fit to the observations and furthermore, that it estimates an individual response function between 
each explanatory variable and the response function. Thus, the influence of the long-term trend is 
separated from the changing influence of the meteorology. Any trends caused by meteorology alone 
could therefore also be calculated. The GAM and its applications is further described in (Solberg et al., 
2020a;Solberg. et al., 2015;Solberg et al., 2020b).  

2.2 EMEP/MSC-W 

EMEP/MSC-W produces annually air quality simulations in support of the LRTAP Convention. This work 
is often complemented with long-term simulation to assess long term evolution. In 2019, it was even 
complemented by a sensitivity simulation covering the 2000-2017 period, but with anthropogenic 
emissions fixed at their levels for 2017. The comparison of this simulation with the reference trend 
simulation allows isolating the relative impact on the trends of (i) European anthropogenic emission 
changes and (ii) all the other factors (meteorological variability, natural sources, intercontinental 
transport).   

The reference run is denoted EMEP_MSCW in the figures, and the simulation with constant emissions 
is EMEP_MSCW_2017. The trend of all factors besides emission changes is derived from the trend in 
EMEP_MSCW_2017, and simply subtracted from the trend in EMEP_MSCW to have the trend due to 
emissions alone. 

In the trends comparing with EMEP observations, and for calculating changes in source contribution 
from different activities and in chemical composition, the consistent EMEP MSC-W model version 
available from the Aerocom trend tool is used (https://aerocom-trends.met.no/EMEP/) i.e.: Model 
versions rv4.17a and rv4.33 (for 2017) and Emissions EMEP v2018 and v2019 (for 2017). The impacts 
of different emission sectors on PM10 and PM2.5 concentrations for the period 2000-2017 were derived 
from a series of model runs, in which sector emissions were individually reduced by 15%. 
An approximate contribution from that sector is then estimated by subtracting the reduction run from 
the base run (without sectoral emission reductions) and multiplying 100/15. The following sectors are 

https://aerocom-trends.met.no/EMEP/
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considered: traffic, industry, residential heating and agriculture. In addition, the contributions to PM10 
and PM2.5 from natural sources (i.e. sea spray and windblown dust) are distinguished. Further details 
are described in the  EMEP Status reports (EMEP, 2018, 2019). 

 

2.3 Observations 

!ƛǊ ǉǳŀƭƛǘȅ ƳƻƴƛǘƻǊƛƴƎ Řŀǘŀ ŦǊƻƳ 99!Ωǎ ŘŀǘŀōŀǎŜǎ ŦƻǊ ǘƘŜ ǇŜǊƛƻŘ нллл-2017, i.e. Airbase for data before 
2013 and e-Reporting for data from 2013 and onwards, were extracted by April 2019. All data were 
compiled into daily data; for PM ad NO2 we used daily averages whereas for O3 we used MDA8 (the 
maximum daily 8 h running mean values). For NO2, O3 and PM10 we used the data capture criteria as 
given above, whereas for PM2.5 this was relaxed to 65 %.  PM could be measured both as hourly data 
and as daily samplŜǎΦ Lƴ ǘƘŜ ǎǘŀǘƛƻƴΩǎ ǘƛƳŜ ǎŜǊƛŜǎ, we did not merge these data in the cases of a switch 
from e.g. daily to hourly sampling over the period so that annual mean can be computed either from 
daily or hourly values.  

Only background sites were considered (i.e. excluding traffic and industrial stations), but no screening 
on the basis of altitude was performed considering that their influence on the overall results would be 
marginal, although models are not expected to be adapted to capture their specificities. 

It should be emphasized that the completeness criteria led to select only measurement stations 
operating over a long period of time subsequently drastically reducing the spatial coverage. The 
conclusions of the present report only apply to a very limited subset of European stations. The 
discussion on model ability to capture the variability is therefore only relevant for those areas and not 
representative of overall model performances. 

The EMEP observation data are all downloaded from the EBAS database infrastructure 
(http://ebas.nilu.no/) and aggregated to annual mean concentrations. Years with data coverage higher 
than 75% are included and time series with at least 14 years of data for the period 2000-2018 are used 
for trend analysis. Minor manual screening of the data has been done, i.e. obviously erroneous data 
are excluded. Time series from some sites which have moved a short distance have been merged, i.e. 
Birkenes/Birkenes II (NO0001R/NO0002R), Rörvik/Råö (SE0002R/SE0014R), Aspvreten/Norunda 
Stenen (SE0012R/ SE0022R), Vavihil/Hallahus  (SE0011R/ SE0020R) , Virolahti II/Virolahti III (FI0017R/ 
FI0018R). 

2.4 Trend calculations 

The trend calculations on EMEP observations and model results were done on annual mean 
concentrations and were based on the Mann Kendall (MK) method for identifying significant trends 
ŎƻƳōƛƴŜŘ ǿƛǘƘ ǘƘŜ {ŜƴΩǎ ǎƭƻǇŜ ƳŜǘƘƻŘ ŦƻǊ ŜǎǘƛƳŀǘƛƴƎ ǎƭƻǇŜǎ ŀƴŘ ŎƻƴŦƛŘŜƴŎŜ ƛƴǘŜǊǾŀƭǎΦ ¢ƘŜǎŜ ƳŜǘƘƻŘǎ 
were programmed and run in Python using the pyMannKendall package (Hussain and Mahmud, 2019). 
Trends are considered statistically significant when the p-value of their Mann-Kendall statistic is lower 
than 0.05. 

  

http://ebas.nilu.no/
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3 Validation 

Both approaches experimented here are models, which require some form of validation. Since the 
statistical GAM model is fitted to the observation, it is unbiased by construction whereas the CTM may 
have a systematic bias. Similarly, the GAM also accounts for the long-term trend in the regression, so 
that the interannual long term evolution is also unbiased. Looking at the temporal correlation 
constitutes a more fair comparison, which is also justified since our focus here is on the capacity of 
such models to capture the extent to which they are able to represent the impact of meteorological 
variability on air quality evolution.  

Since the focus is on long term trends, it is mainly the inter-annual correlation that we want to 
compare. But models are more classically assessed focusing on their day-to-day variability, so that we 
also discuss intra-annual correlations. 

We focus first on intra-annual correlations. The correlation between modelled and observed daily 
indicators is computed for each year over the 2000-2017 period, and the median of the correlations 
found for each year is displayed as maps and scatter plot between the GAM and CTM models. Then 
we compare inter-annual correlations. Here we compute the correlation between the modelled and 
observed annual indicators over the period 2000-2017.For both types of correlations, a value close to 
one indicates the best performances. 

3.1 Ozone 

For ozone, we used MDA8 between April and September as a daily indicator, showing in Figure 1 only 
rural stations (other station types available in supplementary material). The GAM exhibits a slightly 
better capacity to capturing the day-to-day variability. Both models perform less well in southern 
Europe, which is a concern given the importance of ozone pollution there. The CTM performs less well 
as coastal sites in UK, Benelux, North of Germany and Scandinavia, presumably because of local 
meteorological features. The synthetic view in the scatter plot of Figure 2 confirms the overall better 
performance of the GAM, although both models remain fairly similar. 

 

Figure 1: Intra-annual correlation between model (Left: CTM, right: GAM) and rural background 
observations (daily MDA8 from April and September). The correlations are computed for 
each year between 2000 and 2017, and the median over all year is plotted. 
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Figure 2: Scatterplot comparing GAM and CTM intra-annual correlations at rural background sites 
for daily MDA8 from April and September. The correlations are computed for each year 
between 2000 and 2017, and the median over all year is plotted. 

 

 
Since we are primarily interested to the long-term impact of meteorological variability on the trend, 
the essential feature to be captured by the models is the year to year variability. Inter-annual 
correlations are displayed in Figure 3 for the GAM and CTM, and for either the 4MDA8 (the fourth 
highest ozone peak ς as daily maximum of the 8hr running mean - in a given year) and the average of 
MDA8 over April-September. For 4MAD8, both models have quite similar skill according to the 
scatterplot in Figure 4. Again, it is over Southern Europe that they perform less well. For the April-Sept. 
average of MDA8, the GAM model performs better in general (including over central Europe), there 
are improvement in southern Europe, although the correlations are still limited. 
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Figure 3: Inter-annual correlation between model (Left: CTM, right: GAM) and rural background 
observations (daily MDA8 from April and September). The correlations are computed over 
the 2000-2017 period for 4MDA8 (top) and the average of MDA8 between April and 
September (bottom). 

 

 

 

 

 
 

Figure 4: Scatterplot comparing GAM and CTM inter-annual correlations at rural background sites for 
4MDA8 (left) and April-Sept. average of MDA8 (right). The correlations are computed for 
each year between 2000 and 2017, and the median over all year is plotted. 
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3.2 NO2 

The intra-annual correlation of the GAM model is notably better than that of the CTM for daily mean 
NO2 as shown both in the map of correlation (Figure 5) and the scatterplot (Figure 6). The GAM model 
tends to perform better in urban sites, whereas on the contrary the CTM performs better at rural sites. 
The resolution of the EMEP model (10 km) implies that the grid values could not really be compared 
with measurements at urban locations, whereas on the contrary the GAM is specifically designed to 
capture local features. This difference in design has particularly strong impact for a short-lived 
pollutant as NO2. 
 

Figure 5: Intra-annual correlation between model (Left: CTM, right: GAM) and urban (top) and rural 
(bottom) background observations (based on daily NO2). The correlations are computed for 
each year between 2000 and 2017, and the median over all year is plotted. 
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Figure 6: Scatterplot comparing GAM and CTM intra-annual correlations at urban (left) and rural 
(right) background sites for daily NO2. The correlations are computed for each year between 
2000 and 2017, and the median over all year is plotted. 

  

 

When it comes to inter-annual correlation, the performances of the CTM become closer, but are still 
surpassed by the GAM model (Figure 7 and Figure 8). There is a strong spatial variability in the 
performances of the CTM, for instance in Germany, Italy and southern Spain. Again, the discrepancy is 
larger at urban sites. 
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Figure 7: Inter-annual correlation between model (Left: CTM, right: GAM) and urban (top) and rural 
(bottom) background observations. The correlations are computed over the 2000-2017 
period for annual mean NO2. 

  

 

 

 

Figure 8: Scatterplot comparing GAM and CTM inter-annual correlations at urban (left) and rural 
(right) background sites for annual mean NO2. The correlations are computed for each year 
between 2000 and 2017, and the median over all year is plotted. 

  

 
















































